Marking Scheme Sample Question Paper Chemistry XI 2025-26 | Q.
No | Sub
part | Value Points | Step
wise
marks | Total
Marks | |----------|-------------|--------------|-----------------------|----------------| | 1 | | D | 1 | 1 | | 2 | | В | 1 | 1 | | 3 | | D | 1 | 1 | | 4 | | В | 1 | 1 | | 5 | | С | 1 | 1 | | 6 | | A | 1 | 1 | | 7 | | А | 1 | 1 | | 8 | | С | 1 | 1 | | 9 | | С | 1 | 1 | | 10 | | А | 1 | 1 | | 11 | С | ; | 1 | 1 | |----|----------------|---|---------------------------------|---| | 12 | В | 3 | 1 | 1 | | 13 | С | ; | 1 | 1 | | 14 | А | · · | 1 | 1 | | 15 | D | | 1 | 1 | | 16 | С | ; | 1 | 1 | | 17 | No
Ma
Mo | plecular mass of urea = 60g
o. of moles of urea =10/60
ass of solvent = 210 -10 = 200 g
plality of the solution = $\frac{10 \times 1000}{60 \times 200}$ $\frac{10 \times 1000}{60 \times 200}$ $\frac{10 \times 1000}{60 \times 200}$ | 1/2
1/2
1/2
1/2
1/2 | 2 | | 18 | nitr | ie to the presence of one lone pair of electrons on the
rogen atom
bp repulsion is more than bp-bp repulsion | 1 | 2 | | 19 | | A redox couple is defined as having together the oxidised and reduced forms of a substance taking part in an oxidation or reduced half reaction. The redox couples involved in Daniel cell are Zn ²⁺ / Zn and Cu ²⁺ / Cu. | 1
½ +
½ | 2 | |-----|-----|--|---------------|---| | | | OR | | | | | | Potassium permanganate can act as a self indicator in redox titrations. | 1 | | | | | The equivalence point is the theoretical point in a titration where the moles of acid and base are equal, while the endpoint is the point where the indicator changes color, signaling the completion of the titration/ | | | | | | Equivalent point is the point where the reductant and the oxidant are equal in terms of their mole stoichiometry, while the end point is a point where the indicator ensures a minimal overshoot in colour beyond the equivalence point. | | | | 20. | (a) | 1 mole of CH ₄ releases 890.3 kJ of heat upon complete combustion. | | 2 | | | | 890.3 kJ of heat is produced by complete combustion of 1 mol of CH ₄ Therefore, 445.1 kJ of heat is produced by x moles | | | | | | Where, $x = \frac{443.15}{890.3} = 0.5 mol$ | 1 | | | | | Mass of 1 mole of CH ₄ = 16g
Therefore, mass of 0.5 mol = 16 x 0.5 = 8 g | | | | | (b) | To calculate enthalpy of formation of HCl , following reaction to be considered $$\frac{1}{2}$H_{2(g)}+\frac{1}{2}$Cl_{2(g)}\to HCl_{(g)}$ | | | | | | $\Delta_{\rm f} H^0 = -\frac{184}{2} = -92 \ kJ \ mol^{-1}$ | 1 | | | | | | | | | 21 | (A) | Equilibrium shifts towards forward direction | 1 | 2 | |-----|-----|--|-----------------------------|---| | | (B) | When Pressure is increased , there is no shift in equilibrium When Temperature decreases , equilibrium shifts in backward direction. | 1/2 | | | 22. | | KE = 500 eV * $(1.6 \times 10^{-19} \text{ J/eV}) = 8.0 \times 10^{-17} \text{ J}$
KE = $1/2 \text{ mv}^2$ | 1/2 | | | | | $p = \sqrt{(2 \times 1.67 \times 10^{-27} \text{ kg } \times 8.0 \times 10^{-17} \text{ J})}$
= 5.17×10 ⁻²² kg m/s | 1/2 | | | | | λ = h / p | 1 | | | | | $= 1.28 \times 10^{-12} \text{ m}$ | 1 | | | | | | | | | | | | | 3 | | 23. | | Moles of Pb(NO ₃) ₂ = M X V = .100 X 150 = 0.015 mole Moles of NaCl = .150 X200 = .030 mole I mole of Pb(NO ₃) ₂ requires two moles of NaCl 0.015 moles of Pb(NO ₃) ₂ requires 0.030 moles of NaCl Both the reactants are completely consumed 1 mol of Pb(NO ₃) ₂ \rightarrow 1 mol of PbCl ₂ So, 0.015 mol of Pb(NO ₃) ₂ forms 0.015 mol of PbCl ₂ . Molar mass of PbCl ₂ = 278.1g/mol Mass of PbCl ₂ =0.015mol×278.1g/mol=4.17g | 1/2 1/2 1/2 1/2 1/2 1/2 1/2 | 3 | | 24. | | (1) | CH3COOH(I |) + C ₂ H ₅ OH _(I) | ≓ CH₃COOC | ₂ H _{5 (I)} + H ₂ O | | | |-----|-----|--|--|--|---------------------------------------|--|-----|---| | | | Initial
Conc. | 1 mol | 1mol | 0 | 0 | | | | | | Eqbm
Conc. | 1/4 | 1/4 | 3/4 | 3/4 | 1/2 | | | | | K _{eq} = [| CH ₃ COOC | 2H5][H2O] / [Ch | H₃COOH] [C2H | I₅OH] | 1/2 | | | | | $K_{eq} = ($ | 3/4)(3/4) / (1/4) | (1/4) = 9 | | | 1/2 | | | | | ΔG ⁰ | = - 2.303 R | T log K _{eq} | | | 1/2 | | | | | | = - 2.303 x
= - 5662.5
5.66 kJ mol | | og 9 | | 1 | 3 | | 25. | (a) | | | expression
B ^{x-} ; Ksp = [A ^y | '+] × [B ^{x-}] ^y | | 1 | 3 | | | (b) | | solubility e xility = S, the | xpression
en [A ^{y+}]= xS an | d [B ^{x-}] =yS | | | | | | | Thus,
Ksp =(x
Therefo | (S) ^x (yS) ^y = | x ^x y ^y S ^{x+y} | | | 1/2 | | | | (c) | $S = \left(\frac{K_{SP}}{x^{X}y}\right)$ | • | | | | 1/2 | | | | | | ting precip | itation
product Q to h | Ksp | | | | | | | If Q < o | r = Ksp n | pitation occur
to precipitation
own as the cor | | et | 1/2 | | | | | | | OR | | | | | | | | Buffer A | Action of N | laHCO ₃ / Na ₂ | CO ₃ System | | | | | | | This is a | a basic buff | er system, cor | nsisting of: | | | | | NaHCO₃: a weak acid (bicarbonate ion, HCO₃⁻) Na₂CO₃: the salt of its conjugate base (carbonate ion, CO₃²⁻) The buffer equilibrium: | | |---|--| | ion, CO ₃ ²⁻) | | | The buffer equilibrium: | | | | | | $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$ | | | (i) When a small amount of HCl (strong acid) is added: | | | HCl provides H ⁺ ions | | | • The CO ₃ ²⁻ ion reacts with H ⁺ to form more HCO ₃ ⁻ : | | | 1/2 | | | CO_3^{2-} + H^+ \rightarrow HCO_3^- | | | This removes excess H ⁺ , minimizing pH decrease. | | | (ii) When a small amount of NaOH (strong base) is added: | | | NaOH provides OH ⁻ ions | | | • The HCO ₃ ⁻ ion reacts with OH ⁻ to form CO ₃ ²⁻ and ¹ / ₂ | | | water: | | | $HCO_3^- + OH^- \rightarrow CO_3^{2-} + H_2O$
$HCO_3^- + OH^- \rightarrow CO_3^{2-} + H_2O$ | | | This neutralizes the OH⁻, minimizing pH increase. | | | Blood plasma uses a similar bicarbonate buffer system (H ₂ CO ₃ /HCO ₃ ⁻) to maintain blood pH around 7.4. | | | Helps neutralize acids produced by metabolism (like lactic acid) | | | Prevents drastic pH shifts that could disrupt cellular | | | | | function | | | |----|-----|--|-----------|---| | 26 | (a) | N-Methyl propanamine(CH ₃ NHC ₃ H ₇) (any other appropriate metamer) | 1 | 3 | | | (b) | 4-Ethylhept-3-ene | 1 | | | | (c) | Electrophiles are BF ₃ , Cl ⁺ | 1/2 + 1/2 | 27. | (a) | For Δ G to be negative T Δ S > Δ H , hence at the reaction will be spontaneous at high Temperature | 1 | 3 | |-----|-----|---|---|---| | | (b) | Extensive : Volume , Entropy
Intensive : Temperature , Pressure | 1 | | | 28. | | | | | | | | C ₆ H ₆ + CH ₃ CHClCH ₃ AlCl ₃ C ₆ H ₅ CH(CH ₃) ₂ + HCl | | | | | | Step 1: Formation of the carbocation (generation of electrophile) | | | | | | AlCl ₃ is a strong Lewis acid that accepts a lone pair from the Cl atom in isopropyl chloride, making the C–Cl bond more polarized and easier to break. | | | | | | CH ₃ CHClCH ₃ + AlCl ₃ → CH ₃ C ⁺ CH ₃ + AlCl ₄ ⁻ | 1 | | | | | Isopropyl carbocation (CH₃C⁺CH₃) is formed — a
stable 2° carbocation. | | | | | | Step 2: Attack of benzene on the carbocation | | | | | | The benzene π electrons attack the carbocation, forming a non-aromatic carbocation intermediate (arenium ion or sigma complex): | | 3 | | | | $C_6H_6 + CH_3C^+CH_3 \rightarrow C_6H_6-CH(CH_3)_2$ | 1 | | | | | This disrupts aromaticity temporarily. | | | | | | Step 3: Deprotonation and restoration of aromaticity | | | | | | A base (usually AlCl ₄ ⁻) abstracts a proton (H ⁺) from the sigma complex: | | | | | | C_6H_6 -CH ⁺ (CH ₃) ₂ + AICI ₄ ⁻ \rightarrow C ₆ H ₅ -CH(CH ₃) ₂ + HCI + AICI ₃ | 1 | | | | | Aromaticity is restored, and cumene
(isopropylbenzene) is formed. | | | | 29. | a) | No Two electrons in the same atom cannot have the same set of all four quantum numbers according to Pauli's rule. | 1 | 4 | |-----|----|---|------------------------------------|---| | | b) | 3d subshell 3dz². | 1/ ₂
1/ ₂ | | | | c) | 5 orbitals | 1 | | | | c) | OR Hund's rule | 1 | | | 30. | a) | But-2-ene | 1 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | | | | b) | Trans- But-2-ene H CH ₃ | 1 | | | | c) | $C = C$ H_3C H | | | | | | OR | | 4 | | | | 2-Methylpropene, CH ₃

CH ₃ C=CH ₂ | 1 | | |-----|-----|--|-------|--------| | | | OR
Ethanoic acid / Acetic acid | 1 | | | 31. | (A) | (a) (b) (i) Elimination Reaction (ii) Substitution reaction (c) Principle: Distillation is based on the difference in boiling points of components in a liquid mixture. The component with the lower boiling point vaporises first and is condensed and collected. | 1 1 1 | 1X5 =5 | | | | Example: acetone and water. (any other suitable example) | 1 | | | | (B) | OR (a) Lassaigne's Test (b) The organic compound is fused with sodium | 1 | | | | | metal, converting covalently bonded nitrogen into ionic form. | 1/2 | | | | | This forms sodium cyanide(NaCN) | 1/2 | | | | | The fused mass is then treated with ferrous sulphate (FeSO ₄) .This results in formation of sodium hexacyanoferrate(II) | 1/2 | | | | | Upon acidification with dilute sulphuric acid, a Prussian blue colour confirms the presence of nitrogen. | 1/2 | | | | | Either explain in words as above or give the following reactions | 1/2 | | | | | Na + C + N → NaCN | | | |-----|------|---|-----------|---| | | | $Fe^{2+} + 6CN^{-} \rightarrow Fe[CN]_{6}^{4-}$ | 1/2 | | | | | $4Fe^{3+} + 3Fe[(CN)_6]^{4-} + xH_2O \rightarrow Fe_4[Fe(CN)_6]_{3.} \times H_2O$ (Prussian blue) | 1/2 + 1/2 | | | | | (c) Na + 2S \rightarrow Na ₂ S | 1/2 | | | | | Na ₂ S + Na ₂ [Fe(CN) ₅ NO] → Na ₄ [Fe(CN) ₅ NOS]
Violet Colour | 1 + ½ | | | 32. | A.a) | Be ₂ = $\sigma 1s^2 < \sigma^* 1s^2 < \sigma 2s^2 < \sigma^* 2s^2$ | 1 | 5 | | | | Bond Order= ½ (n _b -n _a)= ½ (4-4)=0 | | | | | | Li ₂ = σ 1s ² < σ *1s ² < σ 2s ²
Bond Order= ½ (n _b -n _a)= ½ (4-2)=1 | 1 | | | | | Bond order = $0 \rightarrow Be_2$ is unstable | | | | | | No net bonding \rightarrow molecule does not exist under normal conditions | 1 | | | | b) | Intramolecular H-bonding reduces intermolecular forces, thus lowering boiling point. | 1 | | | | | Example- o-nitophenol (intramolecular H-bonding) boils at lower temp than p-nitrophenol (intermolecular H-bonding). | 1 | | | | | OR | | | | | | | | | | | B.a) | F_2^+ (BO = 1.5) > F_2 (BO = 1) > F_2^- (BO = 0.5) F_2^+ has a stronger bond. | 2 | | | | b) | Compound $X \to Intramolecular H-bonding \to lower water solubility$ | 1 | | | | | Compound Y \rightarrow Intermolecular H-bonding possible with water \rightarrow higher solubility | 1 | | | | | | | | | 33. | (A) | (i) Mg ²⁺ | 1 | 5 | |-----|-----|---|---------------------------------|---| | | | (ii) Be | 1 | | | | | | | | | | | (iii) O | 1 | | | | (B) | (i) n block | 1 | | | | (6) | (i) p-block | | | | | | (ii) Ununseptium (Uus) | 1 | | | | | OR | | | | | (A) | (i) It forms a basic oxide (as it's a metal) | 1 | | | | | (ii) It has higher ionization enthalpy than other alkali metals below it. | 1 | | | | | | | | | | | | | | | | (B) | The first member of each group of the representative | | | | | | elements shows anomalous behaviour from rest of the members of the same group because of the following | | | | | | reasons: | | | | | | (a) Small size | 1/ ₂ 1/ ₂ | | | | | (b) High ionization enthalpy (c) High electronegativity | /2 | | | | | (d) Absence of d-orbitals | | | | | | (Any two reasons) | | | | | | Example : maximum covalency of boron is 4 but aluminium which belongs to the same group has covalency more than 4 as Al has vacant d-orbital in | 1 | | | | | | | | | | | its outermost shell. 2. Example : first member of p-block elements displays | | | | | | greater ability to form $p\pi$ - $p\pi$ multiple bonds with | 1 | | | | | itself. (any other suitable example) | | | | | | (S) Tarior Carragio Champio) |