Marking Scheme Sample Question Paper Chemistry XI 2025-26

Q. No	Sub part	Value Points	Step wise marks	Total Marks
1		D	1	1
2		В	1	1
3		D	1	1
4		В	1	1
5		С	1	1
6		A	1	1
7		А	1	1
8		С	1	1
9		С	1	1
10		А	1	1

11	С	;	1	1
12	В	3	1	1
13	С	;	1	1
14	А	· ·	1	1
15	D		1	1
16	С	;	1	1
17	No Ma Mo	plecular mass of urea = 60g o. of moles of urea =10/60 ass of solvent = 210 -10 = 200 g plality of the solution = $\frac{10 \times 1000}{60 \times 200}$ $\frac{10 \times 1000}{60 \times 200}$ $\frac{10 \times 1000}{60 \times 200}$	1/2 1/2 1/2 1/2 1/2	2
18	nitr	ie to the presence of one lone pair of electrons on the rogen atom bp repulsion is more than bp-bp repulsion	1	2

19		A redox couple is defined as having together the oxidised and reduced forms of a substance taking part in an oxidation or reduced half reaction. The redox couples involved in Daniel cell are Zn ²⁺ / Zn and Cu ²⁺ / Cu.	1 ½ + ½	2
		OR		
		Potassium permanganate can act as a self indicator in redox titrations.	1	
		The equivalence point is the theoretical point in a titration where the moles of acid and base are equal, while the endpoint is the point where the indicator changes color, signaling the completion of the titration/		
		Equivalent point is the point where the reductant and the oxidant are equal in terms of their mole stoichiometry, while the end point is a point where the indicator ensures a minimal overshoot in colour beyond the equivalence point.		
20.	(a)	1 mole of CH ₄ releases 890.3 kJ of heat upon complete combustion.		2
		890.3 kJ of heat is produced by complete combustion of 1 mol of CH ₄ Therefore, 445.1 kJ of heat is produced by x moles		
		Where, $x = \frac{443.15}{890.3} = 0.5 mol$	1	
		Mass of 1 mole of CH ₄ = 16g Therefore, mass of 0.5 mol = 16 x 0.5 = 8 g		
	(b)	To calculate enthalpy of formation of HCl , following reaction to be considered $$\frac{1}{2}$H_{2(g)}+\frac{1}{2}$Cl_{2(g)}\to HCl_{(g)}$		
		$\Delta_{\rm f} H^0 = -\frac{184}{2} = -92 \ kJ \ mol^{-1}$	1	

21	(A)	Equilibrium shifts towards forward direction	1	2
	(B)	When Pressure is increased , there is no shift in equilibrium When Temperature decreases , equilibrium shifts in backward direction.	1/2	
22.		KE = 500 eV * $(1.6 \times 10^{-19} \text{ J/eV}) = 8.0 \times 10^{-17} \text{ J}$ KE = $1/2 \text{ mv}^2$	1/2	
		$p = \sqrt{(2 \times 1.67 \times 10^{-27} \text{ kg } \times 8.0 \times 10^{-17} \text{ J})}$ = 5.17×10 ⁻²² kg m/s	1/2	
		λ = h / p	1	
		$= 1.28 \times 10^{-12} \text{ m}$	1	
				3
23.		Moles of Pb(NO ₃) ₂ = M X V = .100 X 150 = 0.015 mole Moles of NaCl = .150 X200 = .030 mole I mole of Pb(NO ₃) ₂ requires two moles of NaCl 0.015 moles of Pb(NO ₃) ₂ requires 0.030 moles of NaCl Both the reactants are completely consumed 1 mol of Pb(NO ₃) ₂ \rightarrow 1 mol of PbCl ₂ So, 0.015 mol of Pb(NO ₃) ₂ forms 0.015 mol of PbCl ₂ . Molar mass of PbCl ₂ = 278.1g/mol Mass of PbCl ₂ =0.015mol×278.1g/mol=4.17g	1/2 1/2 1/2 1/2 1/2 1/2 1/2	3

24.		(1)	CH3COOH(I) + C ₂ H ₅ OH _(I)	≓ CH₃COOC	₂ H _{5 (I)} + H ₂ O		
		Initial Conc.	1 mol	1mol	0	0		
		Eqbm Conc.	1/4	1/4	3/4	3/4	1/2	
		K _{eq} = [CH ₃ COOC	2H5][H2O] / [Ch	H₃COOH] [C2H	I₅OH]	1/2	
		$K_{eq} = ($	3/4)(3/4) / (1/4)	(1/4) = 9			1/2	
		ΔG ⁰	= - 2.303 R	T log K _{eq}			1/2	
			= - 2.303 x = - 5662.5 5.66 kJ mol		og 9		1	3
25.	(a)			expression B ^{x-} ; Ksp = [A ^y	'+] × [B ^{x-}] ^y		1	3
	(b)		solubility e xility = S, the	xpression en [A ^{y+}]= xS an	d [B ^{x-}] =yS			
		Thus, Ksp =(x Therefo	(S) ^x (yS) ^y =	x ^x y ^y S ^{x+y}			1/2	
	(c)	$S = \left(\frac{K_{SP}}{x^{X}y}\right)$	•				1/2	
			ting precip	itation product Q to h	Ksp			
		If Q < o	r = Ksp n	pitation occur to precipitation own as the cor		et	1/2	
				OR				
		Buffer A	Action of N	laHCO ₃ / Na ₂	CO ₃ System			
		This is a	a basic buff	er system, cor	nsisting of:			

 NaHCO₃: a weak acid (bicarbonate ion, HCO₃⁻) Na₂CO₃: the salt of its conjugate base (carbonate ion, CO₃²⁻) The buffer equilibrium: 	
ion, CO ₃ ²⁻)	
The buffer equilibrium:	
$HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$	
(i) When a small amount of HCl (strong acid) is added:	
HCl provides H ⁺ ions	
• The CO ₃ ²⁻ ion reacts with H ⁺ to form more HCO ₃ ⁻ :	
1/2	
CO_3^{2-} + H^+ \rightarrow HCO_3^-	
This removes excess H ⁺ , minimizing pH decrease.	
(ii) When a small amount of NaOH (strong base) is added:	
NaOH provides OH ⁻ ions	
• The HCO ₃ ⁻ ion reacts with OH ⁻ to form CO ₃ ²⁻ and ¹ / ₂	
water:	
$HCO_3^- + OH^- \rightarrow CO_3^{2-} + H_2O$ $HCO_3^- + OH^- \rightarrow CO_3^{2-} + H_2O$	
This neutralizes the OH⁻, minimizing pH increase.	
Blood plasma uses a similar bicarbonate buffer system (H ₂ CO ₃ /HCO ₃ ⁻) to maintain blood pH around 7.4.	
Helps neutralize acids produced by metabolism (like lactic acid)	
Prevents drastic pH shifts that could disrupt cellular	

		function		
26	(a)	N-Methyl propanamine(CH ₃ NHC ₃ H ₇) (any other appropriate metamer)	1	3
	(b)	4-Ethylhept-3-ene	1	
	(c)	Electrophiles are BF ₃ , Cl ⁺	1/2 + 1/2	

27.	(a)	For Δ G to be negative T Δ S > Δ H , hence at the reaction will be spontaneous at high Temperature	1	3
	(b)	Extensive : Volume , Entropy Intensive : Temperature , Pressure	1	
28.				
		C ₆ H ₆ + CH ₃ CHClCH ₃ AlCl ₃ C ₆ H ₅ CH(CH ₃) ₂ + HCl		
		Step 1: Formation of the carbocation (generation of electrophile)		
		AlCl ₃ is a strong Lewis acid that accepts a lone pair from the Cl atom in isopropyl chloride, making the C–Cl bond more polarized and easier to break.		
		CH ₃ CHClCH ₃ + AlCl ₃ → CH ₃ C ⁺ CH ₃ + AlCl ₄ ⁻	1	
		 Isopropyl carbocation (CH₃C⁺CH₃) is formed — a stable 2° carbocation. 		
		Step 2: Attack of benzene on the carbocation		
		The benzene π electrons attack the carbocation, forming a non-aromatic carbocation intermediate (arenium ion or sigma complex):		3
		$C_6H_6 + CH_3C^+CH_3 \rightarrow C_6H_6-CH(CH_3)_2$	1	
		This disrupts aromaticity temporarily.		
		Step 3: Deprotonation and restoration of aromaticity		
		A base (usually AlCl ₄ ⁻) abstracts a proton (H ⁺) from the sigma complex:		
		C_6H_6 -CH ⁺ (CH ₃) ₂ + AICI ₄ ⁻ \rightarrow C ₆ H ₅ -CH(CH ₃) ₂ + HCI + AICI ₃	1	
		 Aromaticity is restored, and cumene (isopropylbenzene) is formed. 		

29.	a)	No Two electrons in the same atom cannot have the same set of all four quantum numbers according to Pauli's rule.	1	4
	b)	3d subshell 3dz².	1/ ₂ 1/ ₂	
	c)	5 orbitals	1	
	c)	OR Hund's rule	1	
30.	a)	But-2-ene	1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	b)	Trans- But-2-ene H CH ₃	1	
	c)	$C = C$ H_3C H		
		OR		4

		2-Methylpropene, CH ₃ CH ₃ C=CH ₂	1	
		OR Ethanoic acid / Acetic acid	1	
31.	(A)	(a) (b) (i) Elimination Reaction (ii) Substitution reaction (c) Principle: Distillation is based on the difference in boiling points of components in a liquid mixture. The component with the lower boiling point vaporises first and is condensed and collected.	1 1 1	1X5 =5
		Example: acetone and water. (any other suitable example)	1	
	(B)	OR (a) Lassaigne's Test (b) The organic compound is fused with sodium	1	
		metal, converting covalently bonded nitrogen into ionic form.	1/2	
		This forms sodium cyanide(NaCN)	1/2	
		The fused mass is then treated with ferrous sulphate (FeSO ₄) .This results in formation of sodium hexacyanoferrate(II)	1/2	
		Upon acidification with dilute sulphuric acid, a Prussian blue colour confirms the presence of nitrogen.	1/2	
		Either explain in words as above or give the following reactions	1/2	

		Na + C + N → NaCN		
		$Fe^{2+} + 6CN^{-} \rightarrow Fe[CN]_{6}^{4-}$	1/2	
		$4Fe^{3+} + 3Fe[(CN)_6]^{4-} + xH_2O \rightarrow Fe_4[Fe(CN)_6]_{3.} \times H_2O$ (Prussian blue)	1/2 + 1/2	
		(c) Na + 2S \rightarrow Na ₂ S	1/2	
		Na ₂ S + Na ₂ [Fe(CN) ₅ NO] → Na ₄ [Fe(CN) ₅ NOS] Violet Colour	1 + ½	
32.	A.a)	Be ₂ = $\sigma 1s^2 < \sigma^* 1s^2 < \sigma 2s^2 < \sigma^* 2s^2$	1	5
		Bond Order= ½ (n _b -n _a)= ½ (4-4)=0		
		Li ₂ = σ 1s ² < σ *1s ² < σ 2s ² Bond Order= ½ (n _b -n _a)= ½ (4-2)=1	1	
		Bond order = $0 \rightarrow Be_2$ is unstable		
		No net bonding \rightarrow molecule does not exist under normal conditions	1	
	b)	Intramolecular H-bonding reduces intermolecular forces, thus lowering boiling point.	1	
		Example- o-nitophenol (intramolecular H-bonding) boils at lower temp than p-nitrophenol (intermolecular H-bonding).	1	
		OR		
	B.a)	F_2^+ (BO = 1.5) > F_2 (BO = 1) > F_2^- (BO = 0.5) F_2^+ has a stronger bond.	2	
	b)	Compound $X \to Intramolecular H-bonding \to lower water solubility$	1	
		Compound Y \rightarrow Intermolecular H-bonding possible with water \rightarrow higher solubility	1	

33.	(A)	(i) Mg ²⁺	1	5
		(ii) Be	1	
		(iii) O	1	
	(B)	(i) n block	1	
	(6)	(i) p-block		
		(ii) Ununseptium (Uus)	1	
		OR		
	(A)	(i) It forms a basic oxide (as it's a metal)	1	
		(ii) It has higher ionization enthalpy than other alkali metals below it.	1	
	(B)	The first member of each group of the representative		
		elements shows anomalous behaviour from rest of the members of the same group because of the following		
		reasons:		
		(a) Small size	1/ ₂ 1/ ₂	
		(b) High ionization enthalpy (c) High electronegativity	/2	
		(d) Absence of d-orbitals		
		(Any two reasons)		
		Example : maximum covalency of boron is 4 but aluminium which belongs to the same group has covalency more than 4 as Al has vacant d-orbital in	1	
		its outermost shell. 2. Example : first member of p-block elements displays		
		greater ability to form $p\pi$ - $p\pi$ multiple bonds with	1	
		itself. (any other suitable example)		
		(S) Tarior Carragio Champio)		