Time Allowed: 3 hr 80

Maximum Marks:

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.
- Section A carries 20 marks weightage, Section B carries 10 marks weightage, Section - C carries 18 marks weightage, Section - D carries 20 marks weightage and Section - E carries 3 case-based with totalweightage of 12 marks. <u>Section - A:</u>
- 3. It comprises of 20 MCQs of 1 mark each. <u>Section B:</u>
- 4. It comprises of 5 VSA type questions of 2 marks each. <u>Section C</u>:
- 5. It comprises of 6 SA type of questions of 3 marks each. Section – D:
- 6. It comprises of 4 LA type of questions of 5 marks each. <u>Section E:</u>
- It has 3 case studies. Each case study comprises of 3 case-based questions, where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks questionin each case-study.

Internal choice is provided in 2 questions in Section - B, 2 questions in Section - C, 2 questions in Section - D. You have to attempt only one of the alternatives in all such questions.

	<u>SECTION – A</u> (All questions are compulsory. No internal choice is provided in this section)	Marks
1.	The equation of parabola with vertex at origin and directrix $y = -3$ is (a) $y^2 = 12x$ (b) $y^2 = -12x$ (c) $x^2 = 12y$ (d) $x^2 = -12y$	1
2.	The centre of the circle $2x^2 + 2y^2 + 4x - 6y - 3 = 0$ is (a) (1,-3/2) (b) (-1, 3/2) (c) (2,-3) (d) (-2, 3)	1
3.	Which of the following is binary expansion of 24? (a) 1101111 (b) 11000 (c) 111110 (d) 11001	1
4.	The value of $[5.2] - [-3.4]$ is (where [] is greatest integer function)(a) 9(b) 2(c) 8(d) 1	1
5.	 A, B, C, D are playing a game of Ludo. A, C and B, D are partners (partners sit opposite to each other). C is to the left of D who is facing south. In which direction is A's face: (a) North (b) West (c) South (d) East 	1

6.	If it was Friday on 4 May 1964, then what was the day on 6 July 1965?	
0.	(a) Monday (b) Tuesday (c) Wednesday (d) Saturday	1
7.	The domain of the function $f(x) = \frac{x^2 - x}{x^2 + 2x}$ is	1
	(a) \mathbf{R} -{0.2} (b) \mathbf{R} -{2} (c) \mathbf{R} -{02} (d) \mathbf{R}	1
8.	The value of $\lim_{x \to 0} \frac{(1+x)^{n}-1}{x}$ is	1
9.	(a) n (b) 1 (c) $-n$ (d) 0	
9.	(a) n (b) 1 (c) -n (d) 0 If $y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$, $x \neq 0$, then $\frac{dy}{dx}$ is equal to	1
	(a) $\frac{x^2}{x^2-1}$ (b) $\frac{1-x^2}{4x}$ (c) $\frac{-4x}{(x^2-1)^2}$ (d) $\frac{4x}{(x^2-1)^2}$	
10.	Two dice are thrown together, the probability that neither they show equal digits nor the sum	1
	of their digits is 9 will be (a) 13/15 (b) 13/18 (c) 1/9 (d) 8/9	1
11.	The limit for quartile coefficient of skewness are	
	(a) -1 and 1 (b) -2 and 2 (c) -3 and 3 (d) 0 and 1	1
12.	The odd one out is	
10	(a) Sphere (b) circle (c) cylinder (d) cone	1
13.	In a code language TAPE is written as 4825, SMART is written as 91834 and BONE is written as 7605, then BASERA is written as (a) 789198 (b) 785198 (c) 789538 (d) 789138	1
14.	Statement I: All pens are pencils	
	Statement II: Some books are pens.	
	Conclusion I: Some pencils are book	
	Conclusion II: Some pencils are pens.	
	Which of the following is correct	
	(a) Only conclusion I follow.	
	(b) Only conclusion II follows.	
	(c) Both conclusions I and II follows.	
	(d) Neither conclusion I nor conclusion II follows	
15.	P and Q are sisters and R and S are brothers. P's daughter is R's sister. What is Q's relation	
	with S?	
	A) Grandmother B) Mother C) Aunt D) Sister	

16.	An annuity certain, in which the payment falls due at the beginning of each period is	
	(a) Annuity immediate (b) annuity due	1
	(c) deferred annuity (d) contingent annuity	
17.	The effective annual rate of interest corresponding to a nominal rate of 8% per annual payable half yearly is	1
	(a) 8.08% (b) 8.10% (c) 8.16% (d) 8.20%	
18.	In what time will a sum of ₹ 1562.50 produce ₹ 195.10 at 4% per annual compound interest? (a) $1\frac{1}{2}$ years (b) 2 years (c) $2\frac{1}{2}$ years (d) 3 years	1
	 For questions 19 and 20, two statements are given – one labeled Assertion(A) and the other labeled Reason (R). Select the correct answer to these questions from the codes (i), (ii), (iii) and (iv) as given below: (i) Both A and R are true and R is the correct explanation of the assertion (ii) Both A and R are true but R is not the correct explanation of the assertion (iii) A is true, but R is false (iv) A is false, but R is true 	
19.	Assertion (A) : If the numbers $-\frac{2}{3}$, k, $-\frac{3}{2}$ are in G.P. then $k = \pm 1$ Reasoning (R) : If a, b, c are in G.P. then $b^2 = ac$	1
	(a) (i) (b) (ii) (c) (iii) (d) (iv)	
20.	Assertion (A): $\lim_{x \to 1} \frac{ax^2 + bx + c}{bx^2 + cx + a} = 1$, where $a + b + c \neq 0$ Reasoning (R): $\lim_{x \to 3} \frac{\frac{1}{x} + \frac{1}{3}}{x + 3} = \frac{1}{6}$	1
	(a) (i) (b) (ii) (c) (iii) (d) (iv)	
	SECTION – B	
	(All questions are compulsory. In case of internal choice, attempt any one question only)	
21.	Find the value of x if $\frac{\log 169}{\log 13} = \log x$.	2
22.	A student can clear an examination if he/she secure more that 80% marks in atleast one of four subjects. In how many ways a student can clear the examination. OR	

23.	Find the value of k so that the function $f(x) = \begin{cases} \frac{x^2 - 2x - 3}{x - 3}, & x \neq 3\\ 2k, & x = 3 \end{cases}$ is continuous at x = 3.	2
24.	Find the odd one out: 7, 8, 18, 57, 228, 1165, 6996. OR Looking at a portrait of a man, Aagam said, "His mother is the wife of my father's son . Brothers and sisters I have none." At whose portrait was Aagam looking?	2
25.	A committee of 5 persons is to be constituted from a group of 6 males and 8 females. If the selection is made randomly, find the probability that there are 3 females and 2 males in the committee.	2
	SECTION – C (All questions are compulsory. In case of internal choice, attempt any one question only)	3
26.	Three numbers are in G.P. whose sum is 140. If the first and last numbers be multiplied by 4 and the middle number multiplied by 5, they will be in A.P. Find the numbers.	3
27.	On a certain sum of money, the difference between the compound interest for a year, payable half-yearly and the simple interest for a year is Rs180. Find the sum lent out, if the rate of interest in both the cases is 10%.	3
28.	Find the point(s) on x-axis whose distances from the line $\frac{x}{3} + \frac{y}{4} = 1$ is 4 units.	3
29.	Differentiate $\sqrt{2x + 3}$ w.r.t. x by using first principle. OR If $f(x) = \left(\frac{x^4+1}{x^2}\right)^3$, find $f'(1)$.	3
30.	A manufacturing company planned to purchase a machine of Rs50000, which will increase the annual cash flow by Rs18000. The life of the machine is 3 years. After 3 years it will have no salvage value. The management of the company wants to a 18% return on investment. Compute the net present value of the investment. Should the machine be purchased according to NPV analysis? (Given that $(1.18)^{-3} = 0.6085$) OR A bank pays 8% interest per annum compounded half yearly. What equal amount should be deposited at end of each half year for $1\frac{1}{2}$ years to get an amount of Rs2000 at end of 18 months? (Given that $(1.04)^3 = 1.12$)	3

31.	Compute 7	Compute 70th percentile from the following data:										
	Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	
	Group No. of	5	7	10	16	11	7	5	4	3	2	3
	Student	5	/	10	10	11	/	5	4	5	2	
	S											-
						ECTION						
	(All questi		_	-								
32.	In a test, a			-	-				-			
	question w that he cop			-	-			-		-	-	
	it, is $1/8$. F											
	answered		produor	iity tildt		the unsv		question	i, given u		licetry	~
					OR							5
	There are											
	contains 4 from first								-			
	probability					-p w curr						
33.	Let R be a	relation	n on N d	efined b	V							
	$R = \{(a, b)\}$				5) ≠ 1, 1	< a < '	7}.				5
			R in rost		,	,		2,				
	b)	Find th	ne domai	in								
	c)	Find th	ne range									
	d)	Find th	ne codon	nain								
34.	Find the K	arl Pea	rson's co	oefficien	t of corre	elation b	etween X	K and Y f	or the dat	a:		
			5 2	4	9	1 3		8				5
		Y 1	13 8	12	15	9 1	0 11	16				
35.	Mr. L.K.I	Das moi	nthly bas	sic salary	v is Rs19	3800. He	e receive	s HRA at	the rate of	of 24% o	f basic	
	salary and	fixed to	ransport	allowand	ce of Rs	8424 per	month.	His mont	hly contr	ibution t	owards	5
	GPF is Rs	40000.	If he pay	/s Rs450	00 per n	nonth as	income t	ax for fir	st 11 mor	ths, how	much	
	income tax		1 2			ancial ye						
	Annual T	ovoblo	Т	ax Rates				Health ar	d Educat	ion Cess		
	Annual I	axable	10	an mates				i iouitii ui				
	Income Upto ₹2,5		N					Nil				

	70 50 000			40/ 0.1	
	₹2,50,000 to	5% of total income exc	ceeding	4% of the amounts of	
	₹5,00,000	₹2,50,000		income tax	
	₹5,00,000 to	₹12,500 + 10% of total	income	4% of the amounts of	
	₹7,50,000	exceeding ₹5,00,000		income tax	
	₹7,50,000 to	₹37,500 + 15% of total	income	4% of the amounts of	
	₹10,00,000	exceeding ₹7,50,000		income tax	
	₹10,00,000 to	₹75,000 + 20% of total	income	4% of the amounts of	
	₹12,50,000	exceeding ₹10,00,000		income tax	
	₹12,50,000 to	₹1,25,000 + 25% of tot	al income	4% of the amounts of	
	15,00,000	exceeding ₹12,50,000		income tax	
	Above 15,00,000	₹1,87,500 + 30% of tot	al income	4% of the amounts of	
		exceeding ₹15,00,000		income tax	
	Surcharge Rates				
	Taxable Income		Surcharge		
	Upto ₹50,00,000		Nil		
	₹5,00,001 to 10,00,0	00	10% of the	amount of income tax	
	₹10,00,000 to ₹ 20,00	0,000	15% of the	amount of income tax	
	₹20,00,000 to ₹50,00	,000	25% of the	amount of income tax	
	Above ₹50,00,000		37% of the	amount of income tax	
		compulsory. In case of in		e, attempt any one question only)	
36.	=			ole-seller at a discount of 20% on	
	the printed price and s rate of G.S.T is 12%.	ells it to a consumer at th		rice. The sales are intra-state and the	4 (1+1+2)
	Based on above inform	nation, answer the follow	ving questio	ns	
			-		

	(:)		41		
	(i) (ii)	The G.S.T paid by			
	(ii)	The G.S.T paid by		1:4:	
	(iii)	-	g G.S.T, at which air conc	ittioner was bought by	
		the retailer			
		OR	.1 1 1.1	· 1	
		The price at which	the consumer bought the	air conditioner	
37.	Krishnanagar is a small	own in Nadia Distr	ct of West Bengal. Krishn	anagar clay dolls are	
	unique in their realism a	nd quality of their fi	nish. They are created by	modelling coils of clay	
	over a metal frame. The	figures are painted i	n natural colours and their	hair is made either by	
	sheep's wool or jute. Art	isans make models	starting from fruits, anima	ls, God, goddess,	
			and present comic charact	-	
	displayed in different na				
			e clay dolls of Krishnanag	ar.	
	fiere are a few mages (
		1 3. 3			
	N. M.	A BY	H-III		
	AL AL				
				4 5 3	
		NEN			
	C- CO-MA	2 TAM			
				14 M	
					4
	Doll A	Doll B	Doll C	Doll D	4 (1+1+2)
	Donn	Don'D	Don e	Don D	(1 · 1 · 2)
		C 1 1 · 1 1		· 1 · · · · · · · · · · · · · · · · · ·	
			es in Doll A to that of sphe	_	
			s cylindrical body and a sp		
	-		The radius of both the sph	erical head and the	
		-	cylindrical body is 7cm.		
	Based on the above infor				
	i) What is the ratio	of the volume of re	d spherical apple in Doll A	A to that of spherical	
	orange in Doll B	?			
	ii) Find the surface	area of blue coloure	d surface used in male Do	oll C.	
	iii) The blue doll of	Doll-C is reshaped	and into the cylindrical dr	um of Doll-D. If the	
	radius of the dru	m is also 3cm, find	the height of the drum.		
		-	OR		
	If the clay used t	o make female Doll	C is 1.5 times the clay us	ed for blue male Doll C	
	•		e female Doll C. (1 cm^3 =		
	i ina the weight	er erag abea to mak		····· 5)	
38.	In a class of 24 students	16 had taken Biolo	gy, 13 had Physics and 12	had Chemistry. 6 had	
20.			=	energie e nuu	

	three subjects. The school needed to find out more about the various grouping of in order to organize classrooms with the appropriate amount of lab kits for each	
	e above information answer the following questions:	4
(i)	How many students had only Chemistry?	4
(i) (ii)	How many students had only Chemistry? How many students had only one subject?	4 (1+1+
(i)	How many students had only Chemistry?	

Marking Scheme Class: XI Applied Mathematics Session: 2022-23

Q.	Value points/key points	Valu	Total
No		e	mark
		point	S
1.	(c) $x^2 = 12y$	1	1
2.	(b) (-1, 3/2)	1	1
3.	(b) 11000	1	1
4.	(a) 9	1	1
5.	(d) East	1	1
6.	(d) Saturday	1	1
7.	(c) R -{0,-2}	1	1
8.	(a) n	1	1
9.	(c) $\frac{-4x}{(x^2-1)^2}$	1	1
10.	(b) 13/18	1	1
11.	(a) -1 and 1	1	1
12.	(b) circle	1	1
13.	(c) 789538	1	1
14.	(c) Both conclusions I and II follows	1	1
15.	C) Aunt	1	1
16.	(b) annuity due	1	1
17.	(c) 8.16%	1	1
18.	(d) 3 years	1	1
19.	(a) (i)	1	1
20.	(c) (iii)	1	1
21.	$\frac{\log 169}{\log 13} = \frac{\log 13^2}{\log 13}$	1/2	
	log 13 log 13	1/2	
	$\frac{2\log 13}{\log 13} = 2$		2
	So $\log x = 2$	1/2	
	x = 100.	1/2	
22	$N = 1 = C = C^4 + C^4 + C^4$	1	
22.	Number of ways $C_1^4 + C_2^4 + C_3^4 + C_4^4$	1	
	= 4 + 6 + 6 + 1 = 17 OR	1	2
	Number of choices = $5 \times 5 \times 5 \times 4 \times 4 \times 4$	1	2
	= 8000	1	
	- 0000		
23.	$\lim_{x \to 0} \frac{(x-3)(x+1)}{x} = 4$	1	
	$\lim_{x \to 3} \frac{(x-3)(x+1)}{x-3} = 4$	1/2	2
	2k = 4	1/2	
	k = 2		

[
24.	The odd one out 228	1	
24.	because $a_n = (n-1)a_{n-1} + (n-1)$.	1	
	OR	1	
	Since Aagam has no brother or sister, his father has only son. So wife of Aagam's	1	2
	father's on is Aagam' wife. Thus Aagam' wife is the man's mother.	-	-
	Consequently, man is Aagam's son.		
		1	
25.	5 persons out of total 14 can be selected by C_5^{14} , and 3 females and 2 males can be		
	chosen out of 8 females and 6 males = $C_3^8 \times C_2^6$	1/2	
		1/2	2
	So required probability $=\frac{C_3^8 \times C_2^6}{C_5^{14}}$		
	$=\frac{60}{143}$	1	
	143		
26.	Let 3 numbers in G.P. are a, ar , ar^2 then $a + ar + ar^2 = 140$		
	Also $4a$, $5ar$, $4ar^2$ will be in A.P. then		
	$5ar - 4a = 4ar^2 - 5ar$	1	
	$4r^2 - 10r + 4 = 0$		
			3
	(r-2)(4r-2) = 0, $r = 2 \text{ or } \frac{1}{2}$		
	1	1	
	Hence when $r = 2 a = 20$ so three numbers are 20, 40,80	1/2	
	When $r = \frac{1}{2}$ then $a = 80$ so three numbers are 80, 40, 20	1/2	
	2		
27.	Let P = ₹ x		
	S.I. for one year at 10% p.a. $=\frac{x \times 10 \times 1}{100} = \frac{x}{10}$	1/2	
	R.O.I. for conversion period (Half-yearly) = $\frac{1}{2}of \ 10\% = 5\%$	1/2	
	No. of periods (time) = 2		3
	$\begin{bmatrix} 1 & 5 \end{bmatrix}^2$		
	$C.I. = x \left[\left(1 + \frac{5}{100} \right)^2 - 1 \right]$	1	
	$= x \left(\frac{21}{20} \times \frac{21}{20} - 1\right) = \frac{41}{400} x$ C.IS.I. = $\frac{41x}{400} - \frac{x}{10} = 180$		
	$= x \left(\frac{1}{20} \times \frac{1}{20} - 1\right) = \frac{1}{400} x$		
	41x x = 100	1	
	$C.I 3.I. = \frac{1}{400} - \frac{1}{10} = 180$	1	
	x = 72000		
	So the Sum lent out is ₹72000.		
20		1.(<u> </u>
28.	$d = \left \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right $	1/2	
	$\sqrt{A^2 + B^2}$		

	$\frac{1}{3}(x) + \frac{1}{3}(0) - 1$	1	3
	$d = \left \frac{\frac{1}{3}(x) + \frac{1}{3}(0) - 1}{\sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{1}{4}\right)^2}} \right $	1`	
	$\frac{x}{3} - 1 = \pm \frac{5}{3} \text{ then } x = 8 \text{ or } - 2$	1/2	
	Hence points on x-axis are $(8,0), (-2,0)$		
29.	$f(x) = \sqrt{2x+3} \sqrt{2(x+h)+3} - \sqrt{2x+3}$	1	
	By definition $f'(x) = \lim_{h \to 0} \frac{\sqrt{2(x+h)+3} - \sqrt{2x+3}}{h}$ $= \lim_{h \to 0} \frac{\sqrt{2(x+h)+3} - \sqrt{2x+3}}{h} \times \frac{\sqrt{2(x+h)+3} + \sqrt{2x+3}}{\sqrt{2(x+h)+3} + \sqrt{2x+3}}$ $= \lim_{h \to 0} \frac{1}{h} \times \frac{2x+3+2h-2x-3}{\sqrt{2(x+h)+3} + \sqrt{2x+3}}$		
	$=\lim_{h \to 0} \frac{\sqrt{2(x+h)+2} + 2h-2x}{h} \times \frac{\sqrt{2(x+h)+3} + \sqrt{2x+3}}{\sqrt{2(x+h)+3} + \sqrt{2x+3}}$	1	
	$-\lim_{h \to 0} \frac{1}{h} \times \frac{\sqrt{2(x+h)+3}+\sqrt{2x+3}}{\sqrt{2(x+h)+3}+\sqrt{2x+3}}$ $-\lim_{h \to 0} \frac{1}{h} \times \frac{2h}{h}$	1	
	$= \lim_{h \to 0} \frac{1}{h} \times \frac{2h}{\sqrt{2(x+h)+3} + \sqrt{2x+3}}$ $\frac{2}{2\sqrt{2x+3}} \text{ or } \frac{1}{\sqrt{2x+3}}$	1	3
	OR		
	$f(x) = \left(\frac{x^4 + 1}{x^2}\right)^3$		
	Differentiating w.r.t. x $f'(x) = 3\left(\frac{x^4+1}{x^2}\right)^2 \left(2x - \frac{2}{x^3}\right), f'(1) = 0$	2	
30.	Given that Cash out flow ₹50000	1	
	And Cash flow = ₹18000, n = 3 and $i = \frac{18}{100} = 0.18$	1/2	
	Then the present value of cash flow = $18000 \left[\frac{1 - (1 + 0.18)^{-3}}{0.18} \right]$	1	
	So present value of cash flow = $100000[1 - (1.18)^{-3}]$ = $100000[1 - 0.6085]$		
	= 39150 Then the net value ₹ 39150 – 50000 = - ₹ 10850.	1	
	OR		3
	Given A = ₹2000, $i = \frac{8}{2 \times 100} = 0.04$ and $n = 3$ (1.5 years = 3 half years) $[(1 + i)^n - 1]$	1/2	5
	$2 \times 100^{-0.011 \text{ mm} n} = 0 (1.5 \text{ years} = 5 \text{ mm}) \text{ years})$	1/2	
	$A = R \left[\frac{(1+i)^n - 1}{i} \right]$	1	
	$2000 = R \left[\frac{(1+0.04)^3 - 1}{0.04} \right]$		
	$R = \frac{80}{0.125} = 640$	1	
	Hence ₹640 should be deposited at the end of each		

1.					
	Marks Group	No. of Students (f)	Cumulative		
			frequency (c.f.)		
	0-10	5	5		
	10 - 20	7	12		
	20 - 30	10	22		
	30 - 40	16	38		
	40 – 50	11	49		
	50 - 60	7	56		
	60 – 70	5	61		
	70 - 80	4	65		
	80 – 90	3	68	1	
	90 - 100	2	70		3
			$N = \Sigma f_i = 70$		
	Computation of P_{70} :			1/2	
		$N = 70 \Rightarrow \frac{70N}{100} = \frac{70 \times 70}{100} = 49.$			
		100 100			
		st greater than 49 is 56. So, the co		1/2	
	60 is the 70th percentile clas	s such that $l = 50, f = 7, h = 10$	F = 49.		
		$+\frac{\frac{70N}{100}-F}{f} \times h = 50 + \frac{49-49}{7} \times h$			
	$\therefore P_{70} = l -$	$+\frac{100}{f} \times h = 50 + \frac{7}{7}$	< 10 = 50.		
	Hence, $P_{70} = 50 marks$, ,		1	
2.	Let E_1 : Examinee guesses	the answer,			
	E_2 : Examinee copies the an	nswer		1/2	
	E_3 : Examinee know the ar	nswer			
	A = Examinee answer corr	ectly			
	P(E1) = 1/3, $P(E2) = 1/6$ as	nd $P(E3) = 1 - 1/3 - 1/6$ so $P(1)$	$E(3) = \frac{1}{2}$	1/2	
	Hence $P(\frac{A}{E_1}) = \frac{1}{4}, p(\frac{A}{E_2}) =$	$\frac{1}{8}$ and $P\left(\frac{A}{E_2}\right) = 1$		1	
	By Baye,s Theorem				
		$(E_3) P(A/E_3)$		1	
	$P(E_3/A) = \frac{P}{P(E_1)P(A/E_1) + P}$	$(E_2) P\left(\frac{A}{E_2}\right) + P(E_3) P\left(\frac{A}{E_3}\right)$			
	_	$\frac{1}{2} \times 1$			
	=	$\frac{1}{3} \times \frac{1}{4} + \frac{1}{6} \times \frac{1}{8} + \frac{1}{2} \times 1$		1	_
	=	24 29			5
	OR			1	
	Let $E_1 = The$ die show 1			1/2	
	$E_2 = The die show 2, 4,$			12	
	and $A = Ball drawn is blac$				
	$P(E_1) = \frac{2}{6} = \frac{1}{3}, P(E_2) = \frac{4}{6}$			1/2	
	0 5 0	5			
				1	1
	$P\left(\frac{A}{E_1}\right) = \frac{3}{7}, P\left(\frac{A}{E_2}\right) =$	 7		1	

	Then	by total	Probability					1			
		$P(A) = P(E_1)P(A/_{E_1}) + P(E_2)P(A/_{E_2}) + P(E_3)P(A/_{E_3})$									
	$P(A) = \frac{1}{3} \times \frac{3}{7} + \frac{2}{3} \times \frac{4}{7}$							1			
	I (A)	$= \frac{1}{3} \wedge \frac{1}{7}$ $= \frac{11}{21}$	3 7					1			
		= 21									
33.	a) {(3.2)), (4,3), (5,2), (5	.3). (5.4). (6.5)	}			2			
			in: {3,4,5,6}	,-,, (-,-,, (-,-,	, ,			1 5			
	c) Range: {2,3,4,5}						1				
	(d) N						1			
34.	Let	Let $u_i = x_i - 5$ and $v_i = y_i - 12$						1/2			
	x_i	y_i	$u_i = x_i - 5$	$v_i = y_i - 12$	$u_i v_i$	$(u_i)^2$	$(v_i)^2$	-			
	6	13		$\frac{v_i = y_i - 12}{1}$	1	1	1	1			
	$\begin{vmatrix} 2\\ 4 \end{vmatrix}$	8 12	-3 -1	-4	12 0	9 1	16				
	49	12	4	$\begin{bmatrix} 0\\ 3 \end{bmatrix}$	12	1	09				
	1	9	-4	-3	12	16	9				
	3	10	-2	-2	4	4	4	¹ / ₂ for each			
	5 8	11 16	03	-1 4	0 12	09	1	colu			
	0	10	5	•	12	,	10	mn	5		
			$\sum u_i = -2$	$\sum v_i = -2$	$\left \sum_{i=53}^{1} u_i v_i\right = 53$	$\left \sum_{i=56}^{3} u_i\right ^2$	$\sum v_i^2 = 56$				
			1		- 55	- 50	<u> </u>	1			
		$n \sum u_i v_i - (\sum u_i) (\sum v_i)$						1			
		$r(X,Y) = \frac{n \sum u_i v_i - (\sum u_i)(\sum v_i)}{\sqrt{n \sum u_i^2 - (\sum u_i)^2} \sqrt{n \sum v_i^2 - (\sum v_i)^2}}$						1			
				$=\frac{8(5)}{\sqrt{8(56)-(10)}}$	$\frac{3}{-2} - \frac{(-2)(-2)}{\sqrt{8(56)}}$	$\frac{2}{(-2)^2} = 0.$	946				
				γ σ(σσ) (_, γο(οο)	-					
35.		1									
	Net monthly salary $(193800 + 46512 + 8424) = 248736$ Net taxable income = $12 \times 248736 = 2984830(Approximately)$ Income Tax = $187500 + 30\%$ of $(2984830 - 150000)$ = $187500 + 445449 = ₹632949$ Health and Education cess = 4% of $632949 = ₹25317.96$ or ₹25318 Surcharge 25% of $632949 = ₹158237.25 = ₹158237$							1			
								1/2			
								1	5		
								1	5		
								1/2			
	Net income tax = $632949 + 25318 + 158237 = ₹816,504$ only Income Tax already paid = ₹495,000 ($11x45000$)							1/2			
	So at end Mr. Das has to pay $816,504 - 495,000 = ₹321,504$.							12			
				1	,	,	,	1/2			

		1	
36.	 (i) G.S.T paid by the Retailer to the Government =4800-3840 = ₹960 (ii) G.S.T paid by the consumer=₹4800 (iii) Not Price=Printed Price_Discount=40000_8000=₹22000 	1 1	
	(iii) Net Price=Printed Price- Discount=40000-8000=₹32000 SGST paid by the retailer to the whole seller $=\frac{6X32000}{(x_{2}^{2})^{100}} = 1920$		
	CGST paid by the retailer to the whole seller $=\frac{6X32000}{100} = 1920$	1	4
	So Total GST paid by the retailer = $1920+1920 = ₹3840$ Price at which Air conditioner was bought by the retailer= $32000+3840=₹35840$ OR	1	
	C.P for consumer=₹40000 SGST paid by the consumer to retailer=6% of ₹40000=₹2400		
	CGST paid by the consumer to retailer=6% of ₹40000=₹2400 Total G.S.T paid by the consumer to the Retailer=2400+2400=₹4800 Price at which consumer bought the Air conditioner =40000+4800=₹44800	$\frac{1/2}{1/2}$	
		1	
37.	(i) ratio of volumes = r_1^3 : r_2^3 = 8 : 27	1	
	(ii) surface area = 2π r h = 132 cm ²	$\frac{1/2}{1/2}$	
	(iii) Let the height of the drum be h.	72	
	Volume of the drum = volume of the cylinder + volume of the sphere	1/2	
	$\pi 3^{2} h = (\pi 3^{2} \times 7 + \frac{4}{3} \pi 3^{3})$	1/2	
	$\Rightarrow h = 7 + 4$		
	$\Rightarrow h = 11 \text{ cm}$	1	
	OR		
	Volume of female doll = $\frac{3}{2}(\pi 3^27 + \pi 3^3)$	1/2	
	Weight of clay = $\frac{3}{2}X \frac{22}{7}X 9X 10X 1.05$	1/2	
	= 445.5 gm	1	

